OBJECTIVE
To provide timely information to parties interested in the structural health of critical infrastructure components such as bridges, tunnels, pipelines, and buildings.

SYSTEM DESCRIPTION

OPERATION OF THE SYSTEM
MDA300 excites the transducer at regular intervals and stores its voltage output along with temperature and humidity battery voltage in local memory.

An off-site PC autonomously retrieves the data stored in the onboard memory of the motes via the Internet or phone line.

DETAILS OF OPERATION
Daily retrieval of one day’s readings of temperature, humidity, transducer position and mote battery voltage.

MDA300 12-bit high-precision channels provide 0.1 μm resolution for the position transducer.

Interaction between off-site PC and the remote system is provided by an automated java command-line interface.

Remote nodes utilize onboard power management to achieve an expected battery life of about two months.

PRESENTATION OF DATA

Each time data is retrieved from the motes, website is updated in near real time.

http://www.civildata.com/motes

CASE STUDY: RESPONSE OF COSMETIC CRACKS IN A HOUSE TO ENVIRONMENTAL AND BLASTING EVENTS

Case Study supplied by Professor Charles Dowding
Autonomous Crack Monitoring
Civil and Environmental Engineering
Northwestern University

- There exists a limestone quarry 1500 ft away from the structure.
- Crack displacements due to blasting events and environmental effects (temperature, humidity, and wind) are in the scope of this case study.
- Established wired benchmark system used in the same house to validate results.

![Figure 1: Crossbow MDA300 and SpaceAge Control Position Transducer](image1)

![Figure 2: MOXA NPort (left) and Crossbow MIB510 (right)](image2)

![Figure 3: Screen shots from the website](image3)

![Figure 4: Crossbow MDA300 and SpaceAge Control Position Transducer installed over crack](image4)

![Figure 5: Comparison of wireless and wired sensor data](image5)